I usually avoid blogging about my own work here. Mostly,
this is a space for me to explore new topics, or share my excitement over shiny
new and cool breastfeeding science, or force my students to show off their own work. However, I recently wrote a paper I think is worth discussing. The paper was this: “Too much of a good thing: evolutionary
perspectives on infant formula fortification in the United States and its
effects on infant health” soon be published in the American Journal of Human
Biology and currently available in Early View.
Unlike most of my work which is centered on human milk, this
paper focused instead on infant formula, specifically iron fortification of
infant formula. I applied concepts from evolutionary medicine to fortification
practices, and suggested that the current practice of fortifying infant formula
with 12 mg/L of iron was excessive. I stand by this, even as I know many
clinicians may challenge this, and even last year the Section on Nutrition at the American Academy of Pediatrics recommended universal fortification of
breastfed infants out of concern that infants may be at risk of developing iron
deficiency anemia. This viewpoint was immediately challenged internally by the
American Academy of Pediatrics Section on Breastfeeding and scholars who study
infant nutrition. You can read the responses here, and here.
Figure 1: Me, and a wall of infant formula in Cebu, Philippines. I'm five feet one inch tall if you need a scale. Photo by Chris Kuzawa. |
Iron deficiency anemia (IDA) is global problem, with approximately
2 billion (yes, with a b) suffering from some form of anemia based on estimates
from the World Health Organization. IDA during development is associated with
increased infection, mortality, delayed cognitive development, and impairments
with growth in weight and length. It is
a terrible nutritional deficiency, and it makes total sense that we would want
to prevent and treat IDA as much as possible. What I suggest in this paper is that in that
noble goal, we may have gone too far, and commercial infant formula may contain
an excess of iron.
For most of us living in the United States, we live in high
resource, low pathogen environments. Iron depleting infections, especially
those caused by intestinal helminthes, are rare. And iron fortification is quite plentiful for
formula fed infants – formulas are typically fortified with 10-12 mg/L of iron,
and low iron formulas (4 mg/L) are actually quite hard to find. Breastfed babies receive milk with much lower
levels of iron – about 0.2-0.5 mg/L. While differences seem huge on pixels, all
the iron in milk and formula is not bioavailable – about 15-50% of human milk
iron is bioavailable and about 7-14% of infant formula iron. The differences
actually look like this across infancy, as shown here for an “average” female
infant. I have defined average as growing on the 50th percentile of
weight for age, consuming the standard recommended amount of formula (ounces
per pound) or equilivent amount of human milk. As you can see, the differences
in intake are striking. Recommended daily intakes (FDA) are 0.27 mg/day for
infants less than 6 months; breastfed infants are meeting these requirements
while formula fed intakes are consuming vastly more.
I hypothesized that this increase dietary iron would be
mismatched to infant needs, and may result in an excess of iron. While adults
can down regulate iron intake when they are iron replete, infants do not have
the same capacity and will continue to absorb dietary iron. This excess iron
may increase the concentrations of free radicals, lead to oxidative damage in
cells, and most importantly, serve as an iron source for pathogens, increasing
the risk of infection. The iron that is not absorbed by the infant (that other
86-93%) will spend some time in the infant’s digestive system before being
excreted in feces, and may provide an iron source for pathogenic, iron
requiring bacteria such as E. coli. By comparison, the common intestinal
microflora of breastfed babies, Lactobacillus and Bifidobacterium, are either
iron independent (Lactobacillus) or require minimal iron (Bifidobacterium). These
bacteria even contribute to immune responses in breastfed infants AND
competitively inhibit E. coli. Everything may shift with too much iron,
allowing for increased amounts of iron requiring bacteria, including pathogenic
bacteria and even altering the pH of the intestines to support additional
pathogenic bacteria, increasing the risk of GI infections and diarrhea. Too
much iron – absorbed or not – can have consequences for infant health.
Elsewhere, it has been argued that maintaining lower levels
of bodily iron – not anemic – may be protective against the risk of infection
and may an evolved response to minimize infection risk. This actually makes a
lot of sense – limiting iron puts the breaks on pathogenic growth and
replication and may reduce infection risk.
In infants, transplacental iron, especially from delayed
cord clamping, is sufficient to meet iron requirements for the first several
months of life. Iron levels in
unsupplemented infants are quite low at 6 months of life, although few will
develop full blown anemia. I argue that these low levels at 6 months may be
adaptive – this is the time period when infants will be introduced to foods
besides breast milk. Consequently, their exposure to pathogens will increase
greatly (it is also the time when they become more mobile, which may also
contribute). Having low levels of bodily iron may, as suggested for adults in
1976 (Bullen et al., 1976), be protective against infection. Infants with lower levels of bodily iron may
have been less likely to contract infections or die from them, leading to
gradual evolutionary change in how human infants handled iron – and possibly on
the iron content of human milk.
Commercial infant formula with the really high
concentrations of iron undermines this normal biological rhythm, and in our
important attempts to prevent IDA in infants, we may have overshot the mark. In
Europe, the ESPGHAN Global Standards recommend fortification at 4-8 mg/L
(Koletzko et al., 2005), and guess what – the incidence of IDA in infants is
not higher than in the United States. Several randomized control trials, the
gold standard of clinical investigation, have found the same thing – infants
receiving formula with 4-8 mg/L of iron do not have increased risks of IDA
compared to infants receiving 12 mg/L.
This has been interpreted as evidence that higher fortification levels
are safe but it also demonstrates that lower levels of iron fortification are
appropriate to meet infant needs. Too
much iron, I suggest may promote the growth of pathogenic bacteria, alter the
composition of the microbiome, and may even increase long term risks of
Parkinson’s disease.
Infant formula clearly needs iron fortification. But the
current levels of fortification used in the United States may be a case of too
much of a good thing. And as suggested below in the comments - the needs of premature babies will be very different, and the model above is for full term infants of appropriate for gestational age (not premature or small for gestational age).
Author's note: The Alpha Parent has recently discussed a similar topic , and I learned that the Science of Mom had made similar points in 2011 - after the paper had been published. This project was originally presented as a conference talk in April, 2007 at the American Association of Physical Anthropologists.
I assume that this does not apply to preemies? As I understand it, the 6th month rule only applies to infants born full term. You might want to make note in that in your article or, if you believe that iron supplementation is unnecessary for preemies as well, then show support for that. I also thought you might want to know that Alpha Parent is not well received by many online parenting groups because of her extremist views on breastfeeding. Those of us who have struggled with it have found her very off-putting and I suspect she drives more people away from breastfeeding than to it. http://www.skepticalob.com/2013/10/is-the-alpha-parent-a-parody.html
ReplyDeleteThanks for the comment. I have in that the above model is based on the physiology of a full term, appropriate for gestation age infant.
Delete